One of the many pleasures in having my YouTube channel is getting to observe and participate in lots of spirited discussion by a wide range of viewers making comments on my videos. Here is my latest video in the MathFoundations series:
MathFoundations178: The law of (logical) honesty and the end of infinity
Even after one day, I have had many interesting comments. I would like to take the liberty of sharing with you two particularly cogent and insightful comments. The first is by Karma Peny, who writes (I have added some paragraph breaks):
***************
Excellent video; I could not agree more that it is time to expel “infinity” from mathematics. Not only do we need to define fundamental concepts with more clarity, but we need to define exactly what mathematics is. After thousands of years we still have no clear statement to describe what mathematics is.
In the early days of mathematics, all fundamental axioms were derived from real-world objects and actions. Any dispute over axioms could be resolved by examination of real-world objects and actions. As such, fundamental axioms were to some extent ‘provable’ by studying real-world objects and actions. Mathematics was devised to solve real-world problems and it was underpinned by real-world physics. Essentially mathematics provided a modelling tool to help us manage quantities of objects, determine measurements and to make predictions about the real-world, such as for engineering purposes and in astronomy. Many real-world scenarios have the same underlying physics, and so the same general-purpose mathematics can be applied to all cases. The addition of 6 apples to 2 apples has the same underlying mathematics as the addition of 6 pears to 2 pears.
This apparent generic nature can create the illusion that mathematics has its own ‘existence’ and that it is not simply a tool based on real-world physics. This will annoy many mathematicians, but the fact is that to claim that something is not related to the physical universe is to believe in the supernatural. This is what a belief in the supernatural means… the acceptance of phenomena that is not of this world. Whether maths is in the chemistry of the brain, on a computer, or in written form, it consists of rules devised by humans and all of maths has a physical presence.
To claim it has its own inherent existence or that it is in some way detached from reality is to turn maths into a belief system. The axiom ‘an infinite set exists’ is of equal value to an axiom that states ‘the god of thunder exists’. We can claim it is consistent and cannot be disproved, but both these axioms are equally worthless and irrelevant in the real-world, just as are any deductions derived using these axioms. It is often argued that the use of ‘infinity’ in mathematics has proven to be very successful, but the successes could be despite the use of ‘infinity’ rather than because of it. I suspect we will have more clarity and even more successes if we abandon the use non real-world axioms.
*****************
And now here is the response to Karma Peny’s comment by Amanojack A, a consistent contributor of well written and insightful comments. (I have made a single spelling correction.)
*****************
I think you have it exactly right. Math was born out of finding useful abstract objects and situations whose relations were isomorphic/homomorphic to various real-world situations. In other words, a mathematical field’s objects, “moving parts,” and those movements and relations usefully corresponded to certain objects, moving parts, and their movements and relations in the physical world. Pin down the math and now you have a powerful tool applicable to any real-world situation as long as it has an aspect with a homomorphic correspondent in the math. For example, pin down multiplication and you have a powerful tool for counting how many apples you have if they come in crates of 24 each.
So-called “pure math” was born out of the idea that it might be worth developing mathematical objects and relations that correspond to no physical situation yet discovered, but could. Seems noble enough. The problem came when people failed to keep track of context. They floundered into musing about things that not only had no known physical analog, but that couldn’t ever even conceivably have a physical analog. They were unpicturable, things we “only imagine that we can imagine,” as Wildberger said. Like infinity. In another comment I elaborate on how this mind trick is pulled off, making us think we can imagine something we really can’t.
When physicists objected, mathematicians like Hilbert decided to take over the physics departments as well – such has been the power of this social trick of intimidation by pretending to have a unique ability to imagine the nonsensical. Paradox thus became a badge of honor, a sign that you were approaching deep wisdom (rather than stumbling into incoherence). We live with results; they now affect every field, as people point to how physics – king of the sciences! – gets away with it. The infection started with math, spread to physics, and after a century has turned into an epidemic with tendrils extending even as far as the art world of all things.
Returning mathematics to a solid footing is of paramount importance to all fields, as math is the standards bearer for rigor. It does a good job with logical rigor but tends to ignore semantic rigor as is convenient, which in turn lets all other disciplines off the hook in this regard, weakening all of academia (physics being the main conduit).
You hit the nail on the head when you say the successes of mainstream math have come in spite of infinity rather than because of it. Just like the axiom, “There exists a god of thunder,” the axiom of infinite sets functions as a cultural license; it simply allows those figures with the most authority to make up whatever fudges they want to make it look like they’ve proven something rigorously when they haven’t. The resulting mathematical world and its engineering applications retain the appearance of being held up by mathematical rigor, but they are actually held up variously by fudges handed down by fiat and by engineers adjusting them to avoid the cases where they break down. In other words it’s a big mess that is shoehorned into a usable framework, but not by the rigor of mathematicians – that is just smoke and mirrors (see calculus, example; “we’ll prove it rigorously, with limits!” – no, we’ll just make a show of it and move on, knowing it already works well enough for engineering).
In a sense, then, infinity has been quite successful…as a tool for advancing people’s math careers and social standing.
********************
Thanks to both Karma Peny and Amonojack A for these penetrating comments!